8,699 research outputs found

    Intersection Graph of a Module

    Full text link
    Let VV be a left RR-module where RR is a (not necessarily commutative) ring with unit. The intersection graph \cG(V) of proper RR-submodules of VV is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper RR-submodules of V,V, and there is an edge between two distinct vertices UU and WW if and only if UW0.U\cap W\neq 0. We study these graphs to relate the combinatorial properties of \cG(V) to the algebraic properties of the RR-module V.V. We study connectedness, domination, finiteness, coloring, and planarity for \cG (V). For instance, we find the domination number of \cG (V). We also find the chromatic number of \cG(V) in some cases. Furthermore, we study cycles in \cG(V), and complete subgraphs in \cG (V) determining the structure of VV for which \cG(V) is planar

    Density functional theory study of the {\alpha} --> {\omega} martensitic transformation in titanium induced by hydrostatic pressure

    Full text link
    The martensitic {\alpha} --> {\omega} transition was investigated in Ti under hydrostatic pressure. The calculations were carried out using the density functional theory (DFT) framework in combination with the Birch-Murnaghan equation of state. The calculated ground-state properties of {\alpha} and {\omega} phases of Ti, their bulk moduli and pressure derivatives are in agreement with the previous experimental data. The lattice constants of {\alpha} and {\omega}-phase at 0 K were modeled as a function of pressure from 0 to 74 GPa and 0 to 119 GPa, respectively. It is shown that the lattice constants vary in a nonlinear manner upon compression. The calculated lattice parameters were used to describe the {\alpha} --> {\omega} transition and show that the phase transition can be obtained at 0 GPa and 0 K.Comment: 6 pages, 5 figure
    corecore